

NO 19

January 2025

The effect of discount pricing on consumer fruit purchase decisions:

insights from randomized controlled trials in Ethiopia

Key words:
fruits
RCTs
price discount
affordability
Author affiliations:
[1-3] Busara
Conflicts of interest:
There are no conflicts of interest to declare for this study.
Copyedited by: Michael Onsando
Designed by: Lynette Gow

The effect of discount pricing on consumer fruit purchase

decisions: insights from randomized controlled trials in Ethiopia

Abbreviations and acronyms

ANOVA Analysis of Variance

ETB Ethiopian Birr

FV Fruits and vegetables

LMICs Low- and middle-income countries

NCDs Non-communicable diseases
RCTs Randomized Controlled Trials

USD United States Dollar

WHO World Health Organization

Table of contents

Executive summary	6
Introduction	8
Research questions	10
Method	11
Study design	11
Participants	11
Procedure	
Identification strategy	13
Result	
Descriptive statistics	14
ANOVA analysis	15
Regression analysis	16
Conclusion and implications	18
References	19
Appendix 1	21
Appendix 2	27

Tables

Table 1. Descriptive statistics	21
. Table 2. ANOVA mean comparison analysis	23
Table 3. The effect of price discount on consumers' quantity purchase	24
Table 4. The effect of price discount on consumers' quantity purchase,	
by location	25
Table 5. The effect of price discount on consumers' quantity purchase,	
by income	26

Executive summary

This study looked at how price discounts affected consumer purchasing decisions, aiming to understand the role that affordability plays in promoting the consumption of healthier foods. Although there are many studies on the effect of discounting prices on purchase of foods there is limited focus on purchase of healthy foods in developing markets capable of establishing causal inferences. Given the problems of limited nutritional diversity and high rates of malnutrition in low- and middle-income countries- LMICs (Dukhi, 2020), this research offers insight that could inform policies and interventions aimed at enhancing nutritional outcomes and preventing malnutrition in these countries.

According to the theory of demand, the quantity purchase of a given normal good increases as its price decreases (Varian, 2014). However, Ariely (2008), argues that price discount could increase purchase as it heightened sense of urgency and increases perceived value. Conversely, according to Debabrata and Lindsey (2013), people may be less price sensitive when the price of goods increases than when it decreases due to their impulsive inclination to under-consume healthy goods. This study provided an opportunity to investigate this empirically in developing countries settings.

We conducted a field experiment that randomly assigned participants based on a lottery process and provided them with unique colored vouchers—green for market price, yellow for 17% discount, and blue for 42% discount. The participants, however, are unaware of the price associated with the vouchers.

Each voucher had a value of \$7, and the participant used them to purchase whatever bananas they wanted from a designated single vendor so that the quality offered was uniform. The vendors identified the color of the vouchers to determine the price of the Banana for each participant. Subsequently, we compared their banana purchasing behaviors. Data analysis entailed using multiple regression, ANOVA, as well as t-tests statistics analysis.

Results

Consumers' responsiveness to price discount has been found to be highly elastic. Consumers' quantity purchases increased by 22.4% in response to a 17% price cut and by 63.3% in response to a 42% price drop relative to the market price.

Conclusion

An intervention focusing on ensuring affordability of healthy foods such fruits and vegetables demonstrates potential efficacy in increasing purchase in developing countries.

Introduction

Sub-Saharan Africa offers a wide variety of foods, but the range of nutrients available is limited as staple crops are more common. Non-staple foods in the region primarily consist of grains and tubers which provide less energy as compared to many non-staple food options used worldwide. (Remans, 2014). Better overall nutrient intake and adequacy are positively correlated with greater dietary nutritional diversity (Onyango, 2003). According to the World Health Organization (2023) such diversified and balanced diet can reduce the risk of non-communicable diseases (NCDs) and prevent malnutrition, yet in 2022, 149 million children under the age of five faced stunting, and nearly half of all under-five deaths in low and middle income countries were linked to undernutrition.

As part of its recommendations for a nutritionally diverse and balanced diet, World Health Organizations advises that a person take three servings of vegetables and two servings of fruits each day to avert non-communicable diseases (NCDs) (Frank et al., 2019). According to the World Health Organization (2023) the most common non-communicable diseases include diabetes, cancer, asthma, heart attacks, strokes, and chronic inflammatory lung diseases. These diseases are the main cause of morbidity and mortality in low-income countries (LMICs) (Nethan et al., 2017), and according to a 2017 report from the NCD Alliance, LMICs account for 80% of all NCD-related deaths worldwide; and the burden is expected to increase by 27% in Africa in ten years. In line with this, a recent study by Demilew and Firew (2019) revealed that not only are non-communicable diseases (NCDs) on the rise in Ethiopia.

So why are people not consuming fruits and vegetables given their importance?

A number of factors contribute to low consumption of fruit and vegetable (FV) in Ethiopia. These include low diet education (Ayele et al., 2018) and a lack of knowledge about the health benefits of fruits and vegetables (Abate et al., 2021). These can be made worse by low educational levels (Harris et al., 2023). Financial limitations also play a big part as fruits and vegetables are often seen as expensive and even luxurious (Tadesse et al., 2022), and low-income people have to spend a big proportion of their income on them (Hirvonen et al., 2016). Consumption patterns are also influenced by cultural and social factors, such as perceptions about dietary practices during pregnancy (Melesse et al., 2021) and traditional food taboos (Zerfu et al., 2016). Furthermore, seasonal fluctuations in market dynamics and produce availability (Hirvonen et al., 2018; Worako, 2015) as well as psychological factors like present-bias and status quo bias (Gebremariam et al., 2018).

This study focussed on affordability as numerous studies have shown that it is one of the reasons why people in developing countries consume inadequate fruits and vegetables (Miller et al., 2016). We do not claim, however, that it is more important than other factors. Unaffordability may stem from lower income levels, higher fruits and vegetables prices due to low supply, or a combination of the two. Powell et al. (2009) documented that those with lower incomes are more price sensitive. Furthermore, Cornelsen et al. (2015) conducted a systematic review and meta-analysis of food price elasticity and found that changes in food prices had the most own-price impacts, greatly affecting the amount of consumption in low-income nations.

This study also looked at how price level affected how much consumers bought bananas, offering insight into how affordability can impact the amount of fruits that are consumed daily in developing nations which is lower than the WHO recommendations. Moreover, a large number of studies examining the effect of price on quantity purchased are based on household surveys; as a result, the results may be impacted by factors that may not have been considered, such as variations in the quality of the products they purchased. Additionally, the majority of these studies are carried out primarily in developed countries, which reduces the accuracy and generalizability of the findings across various contexts and nations (Cornelsen et al., 2015). This study minimized or resolved those empirical issues by using randomized control trials in the field in Ethiopia. It also benefited from the research team's collaboration with a dedicated trader, which, in addition to randomization, helped to provide buyers with roughly similar quality of fruit.

Research questions

We aimed to answer two main questions: -

First, to what extent does quantity demanded by consumers respond to price discount?

Second, how does price responsiveness vary across different income groups and locations?

Method

Study design

We conducted randomized controlled trials in three different retail markets: Addis Ababa, Hawassa and Shebedino. These markets represented urban, semi-urban, and rural settings respectively. Banana vendors were chosen in each of these markets based on two factors: their capacity to provide enough bananas to the study participants, and their willingness to collaborate with the research team. The banana was selected based on the good consumer perception map, which included that bananas are highly likely to be consumed by the majority of consumers in Ethiopia when compared to other fruits. This ensured that the experiment demonstrates the impact of the intervention rather than a lack of preference for the fruit included in the study.

Participants

The field officers randomly picked participants who visited the selected market during the experiment days. Participants who declined to provide consent were not included in the study. Furthermore, those who first contacted the field officers without the data collectors approaching them were excluded as their purchasing behavior may have been influenced by what they heard from other prior participants.

Procedure

We first selected random samples of consumers. Next, we ensured that each participant selected one wrapped piece of paper from a bowl that might have the number 1, 2, or 3 written on it. This allowed us to guarantee that participants are included in the control groups and different treatment (or treatment rams) at random.

Then, participants were given colored vouchers worth \$7 based on the numbers they randomly picked. Green was given to those with number 1, yellow to number 2, and lastly blue to number 3 holders. Participants are then instructed to take and show the voucher to the designated vendor and buy whatever quantity they wanted, and then take any unused money.

The vendor sold the bananas at the market price for those with green vouchers, at 17% discount for those with yellow vouchers, and at a 42% discount for those with blue vouchers. However, to make sure we understand their natural purchase behavior to a decrease in price, the vendors didn't inform the participants about the discount. Rather, the vendor simply communicated to them the final price without mentioning that it had been discounted. Note that the market price for bananas in Addis Ababa was ETB 60. We set the discounted prices at ETB 50 and ETB 35 to achieve 17% and 42% discounts, aiming to ensure variability in our outcome variable.

Furthermore, in addition to recording the quantity of bananas each participant bought, socioeconomic characteristics of the respondents were recorded using SurveyCTO.

Identification strategy

We estimated the following log-linear regression to identify the impact of the price discount on quantity purchase of banana:

Log-linear model

$$\text{Ln}\;(Q_{i}) = \; \beta_{0} + \beta_{1}\,P_{i1} + \beta_{2}\,P_{i2} + \; \gamma_{1}\,Z_{i1} + \gamma_{2}\,Z_{i2} + \ldots + \gamma_{m}\,Z_{im} \; + \; \epsilon_{i}$$

Where,

- $P_{i1} = 1$ if the banana is offered at a 17% discount; otherwise $P_{i1} = 0$
- $P_{i2} = 1$ if the banana is offered at a 42% discount; otherwise $P_{i2} = 0$
- The market price serves as a reference category
- β_0 is the intercept
- β₁ Captures the treatment effect of receiving a 17% discount relative to the control group(market price)

Result

A. Descriptive statistics

Before performing the regression analysis, it is essential to first examine the summary statistics of the main variables of interest. Table 1 in the Appendix provides details about some of the key variables: quantity purchased and a set of control variables in the form of age, gender, education, marital status, household income, and household size.

In the case of the quantity of banana purchased, the average quantity among the respondents belonging to the group that did not receive the price discount was 1.608 kilograms. For those receiving a discount of 42% from the market price, the quantity bought averaged 2.6 kilograms, while for the 17% discount, the purchased quantity was around 2 kilograms. As may be observed, there is a clear trend toward increased purchasing behavior with greater discounts offered, thus showing price sensitivity among consumers in this study.

The average age was about 33 years, and the standard deviation was 12 years in all three groups, showing that the age profile was quite similar in all arms. In relation to gender distribution, there were not many differences between the 42% and 17% discount groups compared with those who were buying at the market price. The former had a 2% higher proportion of females, whereas the latter had a 6% higher proportion compared to those who purchased at the market price.

The average household income ranged between 5001-7000 Ethiopian birr per month (\approx 92 USD - 128 USD as per the 2023 annual average exchange rate), which does not vary much across the three groups. Household size was also comparable in all the groups, with 4 to 5 members.

From the above descriptive statistics, the groups seem to have very similar socioeconomic characteristics, so changes observed in purchasing behavior are likely to be due to the price discounts offered.

B. ANOVA analysis

From the results of the ANOVA mean comparison, there is sufficient evidence to show there is a statistically significant difference in the amount purchased at the three price levels: market price, 17% discount, and 42% discount, F(2, 297) = 29.207, p < 0.001. This means that pricing has a significant effect on how much consumers are willing to buy.

The post-hoc tests go on to describe these differences in some detail, showing the significant changes in quantity purchased between the market price and the 17% discount (p < 0.001) and between the former and the 42% discount (p < 0.001). If anything, most of the comparisons stayed very close to a high level of significance (p < 0.001) , peaking at p = 0.05 in some cases, which points to slightly less robust but still sufficient enough to conclude for the presence of statistically significant differences in purchase behavior under certain circumstances (Appendix 1, Table 2).

The results have a number of implications. First, they underline the elasticity of consumer purchase decisions to price incentives. It would appear that as the discount percentage goes up, so does purchase quantity, suggesting the role of price elasticity of demand in driving consumer choices. Secondly, organizations concerned with the necessity of increasing fruit consumption or ensuring nutritional diversity can use pricing strategies to influence consumer behavior.

C. Regression analysis

The results from these RCTs, after controlling for socioeconomic factors like education, age, household size, monthly income, gender, and location showed that the quantity purchases of consumers respond substantially to a discount in price: a 17% reduction increased purchases by 22.4%, while a discount of 42% resulted in an increase in quantity purchase of bananas by 63.3%. These results underline a high elasticity in the quantity demanded, a clear indicator of consumer sensitivity to price discounts. Of essence, all the results were significant at 1 percent levels, hence showing just how robust the relationships observed were (Appendix 1, Table 3)

Does the degree of price sensitivity differ based on geographic locations?

We saw different patterns of responsiveness to price discounts and their underlying consumption behaviors in our segmentation analysis of urban, semi-urban, and rural consumers. At a substantial 42% price discount, all consumer segments displayed highly elastic demand for bananas, with quantity purchases increasing significantly by 69.4 percent among

urban consumers, 64.6 percent among semi-urban consumers, and 54.1 percent among rural consumers. It simply means that price changes are very sensitive and occur across all locations, though urban consumers had a slightly higher responsiveness as compared to semi-urban and rural consumers. But when the price discount has a fall of 17%, the percentage increase in quantity purchased compared to those buying at the market price is significantly higher for urban and rural consumers at around 31.2% and 28.3%, respectively, while the response from the semi-urban consumers with only about 6.3% higher relative to those bought at the market price and the result was also statistically not different from zero, making it very clearly inelastic at this level of discount (Appendix 1, Table 4).

Does the degree of price sensitivity vary based on income levels?

A larger price discount results in a relatively higher quantity purchase among high-income earners in comparison to low-income earners. Specifically, on a 42% price discount, the quantity purchase of those earning above ETB 5000 increased about 66.7%, while that of those earning less than ETB 5000 showed a still important and highly elastic but comparatively lower increase of 46.7%.

At a 17% price discount, income groups began to diverge. In this case, lower-income consumers showed only a minimal 8.2 percent increase in quantity purchases, a change that was statistically insignificant. By contrast, higher-income consumers responded significantly to the discount, increasing purchases by 34.2 percent. This very sharp reaction thus shows that price is influential in higher-income groups but is less effective for lower-income consumers at such a lower discount level (Appendix 1, Table 5).

Conclusion and implications

Our findings underscore the fact that price is a strong predictor for consumer purchasing behavior, this means that interventions aimed at making fruits and vegetables more affordable could likely yield marked increases in uptake. Since higher-income groups respond to both lower and higher price discounts for bananas, while lower-income groups primarily respond to larger price discounts, it might be advisable to contemplate the adoption of focused pricing strategies that provide substantial discounts (or subsidy), particularly when aimed at economically disadvantaged populations. Similarly, geographical analysis suggests that a nuanced strategy is required, especially when interventions aim to reduce prices by small margins. Offering higher price discounts appears to be more effective in promoting the purchase and consumption of healthier foods.

References

- Frank, S. M., Webster, J., McKenzie, B., Geldsetzer, P., Manne-Goehler, J., Andall-Brereton, G., ... & Jaacks, L. M. (2019). Consumption of fruits and vegetables among individuals 15 years and older in 28 low-and middle-income countries. The Journal of nutrition, 149(7), 1252-1259.
- Nethan, S., Sinha, D., & Mehrotra, R. (2017). Non communicable disease risk factors and their trends in India. Asian Pacific journal of cancer prevention: APJCP, 18(7), 2005.
- Miller, V., Yusuf, S., Chow, C. K., Dehghan, M., Corsi, D. J., Lock, K., ... & Mente, A. (2016). Availability, affordability, and consumption of fruits and vegetables in 18 countries across income levels: findings from the Prospective Urban Rural Epidemiology (PURE) study. The lancet global health, 4(10), e695-e703.
- 4. Demilew, Y. M., & Firew, B. S. (2019). Factors associated with noncommunicable disease among adults in Mecha district, Ethiopia: A case control study. *PloS* one, 14(5), e0216446.
- Miller, V., Yusuf, S., Chow, C. K., Dehghan, M., Corsi, D. J., Lock, K., ... & Mente, A. (2016). Availability, affordability, and consumption of fruits and vegetables in 18 countries across income levels: findings from the Prospective Urban Rural Epidemiology (PURE) study. The lancet global health, 4(10), e695-e703.
- Powell, L. M., Zhao, Z., & Wang, Y. (2009). Food prices and fruit and vegetable consumption among young American adults. Health & place, 15(4), 1064-1070. Hertwig, R., & Grüne-Yanoff, T. (2017). Nudging and boosting: Steering or empowering good decisions. Perspectives on Psychological Science, 12(6), 973-986.
- Cornelsen, L., Green, R., Turner, R., Dangour, A. D., Shankar, B., Mazzocchi, M., & Smith, R. D. (2015). What happens to patterns of food consumption when food prices change? Evidence from a systematic review and meta-analysis of food price elasticities globally. Health economics, 24(12), 1548-1559.

- 8. Kaur, S. (2022). Barriers to consumption of fruits and vegetables and strategies to overcome them in low-and middle-income countries: a narrative review. Nutrition Research Reviews, 1-28.
- Carroll, K. A., Samek, A., & Zepeda, L. (2018). Food bundling as a health nudge: Investigating consumer fruit and vegetable selection using behavioral economics. Appetite, 121, 237-248.
- 10. NCD Alliance. Ncd facts: the global epidemic, 2017. Available: https://ncdalliance.org/ the-global-epidemic. Accessed 25 March 2024].
- 11. WHO Newsroom Fact Sheet: Noncommunicable diseases, 2023. Available: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases. 25 March 2024].
- 12. Yahia, E. M., García-Solís, P., & Celis, M. E. M. (2019). Contribution of fruits and vegetables to human nutrition and health. In Postharvest physiology and biochemistry of fruits and vegetables (pp. 19-45). Woodhead Publishing.
- 13. Liu, R. H. (2013). Health-promoting components of fruits and vegetables in the diet. Advances in nutrition, 4(3), 384S-392S.
- 14. Slavin, J. L., & Lloyd, B. (2012). Health benefits of fruits and vegetables. Advances in nutrition, 3(4), 506-516.
- 15. Ariely, D. (2008). Predictably Irrational: The Hidden Forces That Shape Our Decisions. HarperCollins.
- Varian, H. R. (2014). Intermediate Microeconomics: A Modern Approach (9th ed.).
 W.W. Norton & Company.
- Talukdar, D., & Lindsey, C. (2013). To buy or not to buy: Consumers' demand response patterns for healthy versus unhealthy food. Journal of Marketing, 77(2), 106-123. https://doi.org/10.1509/jm.11.0222

Appendix 1

Table 1. Descriptive statistics

Variables	Control Groups n=104	Treatment Arm 1 n=89	Treatment Arm 2 n=107
Quantity purchased			
mean	1.608	2.577	1.988
sd	0.788	0.998	0.863
min	0.5	0.667	1
max	5	5	5
Gender			
mean	0.394	0.416	0.458
sd	0.491	0.496	0.501
min	0	0	0
max	1	1	1
Age			
mean	32.67	33.011	32.701
sd	12.57	12.726	12.954
min	18	18	18
max	67	72	77
Marital status			
mean	1.942	1.854	1.804
sd	1.022	0.911	0.679
min	1	1	1
max	5	5	5
Education			
mean	2.788		2.841
sd	1.155		1.237
min	1		1
max	5		5

Table 1 continued on the next page

Variables	Control Groups n=104	Treatment Arm 1 n=89	Treatment Arm 2 n=107
Household income			
mean	4.202	4.213	4.187
sd	1.497	1.434	1.48
min	1	1	1
max	6	6	6
Location			
mean	2		2
sd	0.824		0.813
min	1		1
max	3		3
Household size			
mean	4.356	4.933	4.187
sd	1.96	2.504	1.48
min	1	1	1
max	10	12	6

The effect of discount pricing on consumer fruit purchase

decisions: insights from randomized controlled trials in Ethiopia

Table 2. ANOVA mean comparison analysis

ANOVA quantity purchased Sum of squares F df Mean square Sig. 45.325 2 Between groups 22.663 Within groups 230.447 297 29.207 .000 .776 Total 275.772 299

Post Hoc tests

Multiple comparisons

Dependent variable: aug

Dependent variable: quantity purchased

Tukey HSD

(I) Prices	(J) Prices	Mean difference (I-J)	Std. error	Sig.	95% Confidence interval Lower bound
Market price	17% discount 42% discount	380* 969*	.121 .127	.005	67 -1.27
17% discount	Market price 42% discount	.380* 589*	.121 .126	.005	09 89
42% discount	Market price 17% discount	.969* .589*	.127 .126	.000	.67 .29

^{*.} The mean difference is significant at the 0.05 level

Table 3. The effect of price discount on consumers' quantity purchase

Dependent variable: I	og (quantit	y purchased	d)				
Variables	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
17% discount	1.259***	1.247***	1.249***	1.244***	1.227***	1.223***	1.224***
	(0.0761)	(0.0753)	(0.0754)	(0.0749)	(0.0749)	(0.0746)	(0.0728)
42% discount	1.641***	1.641***	1.642***	1.625***	1.642***	1.641***	1.633***
	(0.104)	(0.106)	(0.105)	(0.105)	(0.102)	(0.103)	(0.0992)
Education		✓	✓	✓	✓	✓	✓
Age			✓	✓	✓	✓	✓
HH member size				✓	✓	✓	✓
HH monthly income					✓	✓	✓
Gender						✓	✓
Location							✓
Constant	1.446***	1.560***	1.359**	1.274*	1.238	1.194	1.360*
	(0.0644)	(0.159)	(0.185)	(0.180)	(0.187)	(0.187)	(0.215)
Observations	300	300	300	300	300	300	300
R-squared	0.173	0.190	0.195	0.203	0.244	0.247	0.295

Note: This table reports the exponential of the log-linear regression coefficients. Robust standard errors in parentheses, and *** p<0.01, ** p<0.05, * p<0.1. Note that, to make interpretation easier, we subtracted one from the exponential of the log linear coefficients and multiplied the result by 100 [(exp(b)-1)*100] if the exponential of the log linear coefficients is greater than one. The log linear coefficients exponential are subtracted from one if the long-linear coefficient is less than one, and the resulting number is then multiplied by [(1-exp(b))*100]. Consequently, one can interpret the coefficient as percentage increase or decrease.

decisions: insights from randomized controlled trials in Ethiopia

 $\textbf{Table 4.} \ \textbf{The effect of price discount on consumers' quantity purchase, by location}$

Dependent variable: Log (quantity purchased)				
Variables	Model 1: Urban	Model 2: Semi-urban	Model 3: Rural	
17% discount	1.312**	1.063	1.283***	
	(0.173)	(0.0985)	(0.119)	
42% discount	1.694***	1.646***	1.541***	
	(0.223)	(0.161)	(0.152)	
Education	✓	✓	✓	
Age	✓	✓	✓	
HH member size	✓	✓	✓	
HH monthly income	✓	✓	✓	
Gender	✓	✓	✓	
Location	✓	✓	✓	
Constant	1.477	1.110	1.414*	
	(0.360)	(0.353)	(0.269)	
Observations	100	100	100	
R-squared	0.245	0.428	0.400	

Table 5. The effect of price discount on consumers' quantity purchase, by income

Dependent variable: Log (quantity purchased)				
Variables	Model 1: Relatively lower income HH	Model 2: Relatively higher income HH		
17% discount	1.082	1.342***		
	(0.123)	(0.0937)		
42% discount	1.467***	1.667***		
	(0.174)	(0.124)		
Education	✓	✓		
Age	✓	✓		
HH member size	✓	✓		
Gender	✓	✓		
Location	✓	✓		
Constant	1.657**	1.646**		
	(0.375)	(0.329)		
Observations	93	207		
R-squared	0.232	0.321		

Note: This table reports the exponential of the log-linear regression coefficients. Robust standard errors in parentheses, and *** p<0.01, ** p<0.05, * p<0.1. Model 1 respondents have a monthly household income below ETB 5000, while Model 2 respondents have a higher than 5000 monthly income. Note that, to make interpretation easier, we subtracted one from the exponential of the log linear coefficients and multiplied the result by 100 [(exp(b)-1)*100] if the exponential of the log linear coefficients is greater than one. The log linear coefficients exponential are subtracted from one if the long-linear coefficient is less than one, and the resulting number is then multiplied by $[(1-\exp(b))*100]$. Consequently, one can interpret the coefficient as percentage increase or decrease.

Appendix 2

These are the vouchers used during the experiments.

About Busara

Busara is a research and advisory organization, working with researchers and organizations to advance and apply behavioral science in pursuit of poverty alleviation. Busara pursues a future where global human development activities respond to people's lived experience; value knowledge generated in the context it is applied; and promote culturally appropriate and inclusive practices. To accomplish this, we practice and promote behavioral science in ways that center and value the perspectives of respondents; expand the practice of research where it is applied; and build networks, processes, and tools that increase the competence of practitioners and researchers.

About Busara Groundwork

Busara Groundwork lays the groundwork for future research and program design. As think pieces, they examine the current state of knowledge and what is needed to advance it, frame important issues with a behavioral perspective, or put forward background information on a specific context.

How to cite:

Maru, Digafe; Wanjiku Kiarie; Edel Koki. The effect of discount pricing on consumer fruit purchase decisions: insights from randomized controlled trials in Ethiopia. Busara Groundwork No. 19 (Research Agenda). Nairobi: Busara, 2025. DOI: doi.org/10.62372/FADC9205

38 Apple Cross Road, Lavington, Nairobi, Kenya www.busara.global

